例4 绘制等比数列.

[简要步骤]:

- (1) 作一水平直线, 作三条与直线垂直的线段 AB、CD、EF;
- (2) 同时选中线段 AB、CD,利用"度量"菜单中的"比"得出它们的比值。选中度量值, 再选中"变换"菜单的"标记比",把它标记为缩放的比值。单击"文本工具",双击度 量的比值,在"标签"框中输入"q";
- (3) 选中线段 EF, 度量它的长度, 单击"文本工具", 双击度量的长度值, 在"标签"框中 输入"a";
- (4) 选中点"E",选择"变换"菜单的"平移"命令,在打开的对话框中,在"固定距离" 中输入"1",在"固定角度"中输入"0",单击"平移",得到一个点E'。选择点E', 作已知直线的垂线,单击直线与垂线的交点,得点"G";
- (5) 双击点 G,将它标记为缩放中心,选中点 E',选择"变换"菜单的"缩放"命令,选择"标记比",单击"缩放",得到点 E";
- (6) 隐藏点 E'、直线 E'G、线段 EF,连接线段 E"G,将其"线型"改为"虚线";
- (7) 单击点 E,选择"变换"菜单的"迭代"命令,单击绘图区中的 E",不断按键盘上的 +号,增加迭代次数,单击"迭代",如图 3.34;
- (8) 画线段 EF。

图 3.34

例 5 计算数列 1, 3, 5, 7, 9.....的第 *n* 项. [简要步骤]:

(1) 新建参数 *a*₁=1, 计算 *a*₁+2, 如图 3.35;

迭代 🔀
<u>原象到初象</u> a1 ⇒ a1+2
送代次数: 5。 □ □ → □ → → → → → → → → → → → → → → → →
帮助 创 送代

图 3.35

- (2) 新建参数 n=10;
- (3) 选中 a₁=1 和 n=10, 按住 "shift", 打开 "变换" 菜单的 "带参数的迭代", 打开 "迭代" 属性对话框;
 - (4) 单击 *a*₁+2=3, 然后选择"迭代", 生成如图 3.36 的图表:

a ₁ = 1.00	n	a ₁ +2
	0	3.00
a ₁ +2 = 3.00	1	5.00
n = 10.00	2	7.00
	3	9.00
	4	11.00
	5	13.00
	6	15.00
	7	17.00
	8	19.00
	9	21.00
	10	23.00

图 3.36

例6 求数列S = $1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$ 的前 n 项和。

[简要步骤]:

- (1) 新建参数 k=1, $a_1=1$, $s_0=0$, n=6;
- (2) 利用计算工具, 算出 k+1, $\frac{1}{k+1}$, $s_0 + a_1$;
- (3) 选择 k=1, $a_1=1$, $s_0=0$, n=6, 按住 shift, 深度迭代, 得到如图 3.37 的数值表:

k = 1.00				
a ₁ = 1.00	-	s ±2	L. 4	1
s. = 0 00		30" a1	K+1	(k+1)
30 - 0.00	0	1.00	2.00	0.50
	1	1.50	3.00	0.33
k+1 = 2.00	2	1.83	4.00	0.25
1	3	2.08	5.00	0.20
$\frac{1}{(k+1)} = 0.50$	4	2.28	6.00	0.17
(((, ())))	5	2.45	7.00	0.14
s ₀ +a ₁ = 1.00	6	2.59	8.00	0.13
n = 6.00				

图 3.37

例7 画出菲波拉契数列 $a_1 = 1, a_2 = 1, a_n = a_{n-1} + a_{n-2}$ 。

【分析】数列的前提条件是 $a_1 = 1, a_2 = 1$,因为 $a_n = a_{n-1} + a_{n-2}$;所以原像是 a_1, a_2 。

[简要步骤]:

(1) 新建参数 a_1 =1, a_2 =1, 利用"度量"菜单的计算命令, 计算 $a_1 + a_2$;

(2) 右击" $a_1 + a_2 = 1$ ",选择"属性"对话框,把计算结果的标签改为 a_n ,如图 3.38;

度量结果 a[n] 的属性
对象 标签 值
「标签 (L)
AN
匚 在自定义工具中使用标签

图 3.38

(3) 新建参数 n=8;

(4) 依次选择 a_1, a_2 , n, 作深度迭代, 单击 $a_2 = 1 \pi a_n = 2$, 得到如下的迭代对话框:

送代 🔀
<u>原象 到 初象</u>
$a_1 \Rightarrow a_2$
a ₂ ⇒ a _n
迭代次数:8。
显示 @) ▼ 结构 (፩) ▼
帮助创 取消 迭代

图 3.39

(5) 单击"迭代",则得到如下的数值表:

a ₁ = 1.00	n	a _n
a ₂ = 1.00	0	2.00
a = 2.00	1	3.00
$a_n = 2.00$	2	5.00
n = 8.00	3	8.00
	4	13.00
	5	21.00
	6	34.00
	7	55.00
	8	89.00

图 3.40